Ray Tracing Point Set Surfaces

Anders Adamson Marc Alexa
Outline

- Introduction
- Related Work
- Surface Definition and Features
- Computing Ray-Surface Intersections
- Implementation
- Results
Introduction

- Why Point Sets
 - Represents more details than triangles

- Why Ray Tracing
 - Popular
 - High Quality Models
 - Flexible
Introduction

- **2 General Approaches**
 - The point set is used to compute a surface, which is ray traced
 - The intersection of a ray and the point set is defined without the intermediate definition of a surface

- **2. Appr. is not a surface definition!**
 - In each point a disk is constructed using the point normal
 - A cylinder around the ray is intersected with the disks
 - The intersection is computed as a weighted average of disks whose centers are inside the cylinder
Introduction

- The reason of surface definition
 - Primary and secondary rays intersect the same surface
 - The resulting image of the shape is view independent, which is a prerequisite for the generation of animated sequences
 - Renderings of CSG-defined shapes are possible

- Advantages of surface definition
 - The computation is local
 - It is possible to define a minimum feature size
 - The surface is smooth and manifold
Related Work

- Hoppe et al. *(SIGGRAPH 92)*
 - A signed distance field from the points
 - Related to Voronoi-based reconstruction techniques
- Implicit Surfaces Researches
 - Point set surfaces could be seen as an implicit surface
- Ray Tracing / Ray Marching Techniques
- Efficiency Methods
Surface Definition and Features

- Think about the given set of points in 3D
- Reference domain shall be computed to project a point “r”
- That reference domain is determined by minimizing the weighted distance of points to a plane “H”
- Assume the projection of r onto H which is called “q”, then H is found by locally minimizing:

\[
\sum_{i=1}^{N} \left(\langle n, p_i \rangle - D \right)^2 e^{-\|p_i - q\|^2/h^2}
\]
Surface Definition and Features
Local reference domain is then given by an orthonormal coordinate system on H then q becomes the origin 😊

In this reference domain a bivariate polynomial g is fitted to the points minimizing the squared distances in normal direction of H

The projection of ray of r onto point set surface is defined by the polynomial value at the origin i.e. $R(r) = q + g(0,0)n$
Surface Definition and Features

- The implications of Gaussian-weighted distances
 - The projection operator works only in a tubular neighborhood around the point set. Points far from the point set are projected to infinity.
 - Local features are larger than h. This means a ball of radius h intersects only one connected component of the surface.
Computing Ray-Surface Intersections

- The general idea of computing ray-surface intersections is to converge iteratively by projecting points from the ray onto the surface.
- Every projection of a point r provides the following useful information:
 - Distance of r to the surface
 - Direction of projection
 - The local plane H of ray
 - The local bivariate polynomial approximation of ray
Computing Ray-Surface Intersections
Computing Ray-Surface Intersections

- The region of trust for local polynomials
Computing Ray-Surface Intersections

- Enclosing sphere structure
Implementation

- Spatial hierarchy
 - Checking all the spheres for potential intersections
 - To avoid unnecessary ray-sphere intersection tests, use a bounding sphere hierarchy that is built bottom-up from the region of trust spheres

- Exploiting coherence
 - When ray intersects a sphere a point needs to be projected onto the surface to yield the local polynomial approximation
 - Use the sphere center for the first projection
Implementation

- Sorting for shadow rays
Implementation

Brief Algorithm
- Traverse the spacial hierarchy, collect all spheres intersected by the ray
- Sort the spheres with respect to their distance from the ray-origin
- Pop a sphere from the priority-queue and execute the refinement procedure
Results
Results
Results
Any Problem?